Search Torrents
Manning | Graph-Powered Machine Learning [Video Ed...
Seeders: 1 Leechers: 0
Manning | Graph-Powered Machine Learning [Video Edition] [FCO] Torrent content (File list)
|
---|
0. Websites you may like/1. Get Free Premium Accounts Daily On Our Discord Server!.txt 1.3 KB |
0. Websites you may like/2. OneHack.us Premium Cracked Accounts-Tutorials-Guides-Articles Community Based Forum.url 0.4 KB |
0. Websites you may like/3. FTUApps.com Download Cracked Developers Applications For Free.url 0.2 KB |
0. Websites you may like/4. FreeCoursesOnline.io Download Udacity, Masterclass, Lynda, PHLearn, etc Free.url 0.3 KB |
01-Part 1 Introduction.mp4 21.3 MB |
02-Chapter 1 Machine learning and graphs - An introduction.mp4 69.7 MB |
03-Chapter 1 Business understanding.mp4 39.1 MB |
04-Chapter 1 Machine learning challenges.mp4 49.8 MB |
05-Chapter 1 Performance.mp4 53.1 MB |
06-Chapter 1 Graphs.mp4 33.3 MB |
07-Chapter 1 Graphs as models of networks.mp4 71.3 MB |
08-Chapter 1 The role of graphs in machine learning.mp4 73.8 MB |
09-Chapter 2 Graph data engineering.mp4 82.0 MB |
10-Chapter 2 Velocity.mp4 50.8 MB |
11-Chapter 2 Graphs in the big data platform.mp4 49.4 MB |
12-Chapter 2 Graphs are valuable for big data.mp4 43.2 MB |
13-Chapter 2 Graphs are valuable for master data management.mp4 75.7 MB |
14-Chapter 2 Graph databases.mp4 52.1 MB |
15-Chapter 2 Sharding.mp4 70.5 MB |
16-Chapter 2 Native vs. non-native graph databases.mp4 79.9 MB |
17-Chapter 2 Label property graphs.mp4 37.7 MB |
18-Chapter 3 Graphs in machine learning applications.mp4 65.9 MB |
19-Chapter 3 Managing data sources.mp4 77.4 MB |
20-Chapter 3 Detect a fraud.mp4 52.3 MB |
21-Chapter 3 Recommend items.mp4 63.6 MB |
22-Chapter 3 Algorithms.mp4 48.2 MB |
23-Chapter 3 Find keywords in a document.mp4 53.6 MB |
24-Chapter 3 Storing and accessing machine learning models.mp4 31.4 MB |
25-Chapter 3 Monitoring a subject.mp4 55.5 MB |
26-Chapter 3 Visualization.mp4 37.9 MB |
27-Chapter 3 Leftover - Deep learning and graph neural networks.mp4 52.8 MB |
28-Part 2 Recommendations.mp4 148.9 MB |
29-Chapter 4 Content-based recommendations.mp4 67.5 MB |
30-Chapter 4 Representing item features.mp4 63.4 MB |
31-Chapter 4 Representing item features.mp4 60.2 MB |
32-Chapter 4 User modeling.mp4 33.6 MB |
33-Chapter 4 Providing recommendations.mp4 56.8 MB |
34-Chapter 4 Providing recommendations.mp4 66.3 MB |
35-Chapter 4 Providing recommendations.mp4 72.6 MB |
36-Chapter 5 Collaborative filtering.mp4 99.0 MB |
37-Chapter 5 Collaborative filtering recommendations.mp4 92.7 MB |
38-Chapter 5 Computing the nearest neighbor network.mp4 69.0 MB |
39-Chapter 5 Computing the nearest neighbor network.mp4 47.9 MB |
40-Chapter 5 Providing recommendations.mp4 53.8 MB |
41-Chapter 5 Dealing with the cold-start problem.mp4 40.2 MB |
42-Chapter 6 Session-based recommendations.mp4 61.8 MB |
43-Chapter 6 The events chain and the session graph.mp4 68.3 MB |
44-Chapter 6 Providing recommendations.mp4 81.3 MB |
45-Chapter 6 Session-based k-NN.mp4 63.6 MB |
46-Chapter 7 Context-aware and hybrid recommendations.mp4 67.6 MB |
47-Chapter 7 Representing contextual information.mp4 42.9 MB |
48-Chapter 7 Providing recommendations.mp4 85.9 MB |
49-Chapter 7 Providing recommendations.mp4 85.1 MB |
50-Chapter 7 Advantages of the graph approach.mp4 51.8 MB |
51-Chapter 7 Providing recommendations.mp4 38.6 MB |
52-Part 3 Fighting fraud.mp4 34.4 MB |
53-Chapter 8 Basic approaches to graph-powered fraud detection.mp4 48.5 MB |
54-Chapter 8 Fraud prevention and detection.mp4 45.2 MB |
55-Chapter 8 The role of graphs in fighting fraud.mp4 47.1 MB |
56-Chapter 8 Warm-up - Basic approaches.mp4 55.5 MB |
57-Chapter 8 Identifying a fraud ring.mp4 46.9 MB |
58-Chapter 9 Proximity-based algorithms.mp4 69.0 MB |
59-Chapter 9 Distance-based approach.mp4 49.9 MB |
60-Chapter 9 Creating the k-nearest neighbors graph.mp4 52.1 MB |
61-Chapter 9 Identifying fraudulent transactions.mp4 82.6 MB |
62-Chapter 9 Identifying fraudulent transactions.mp4 32.5 MB |
63-Chapter 10 Social network analysis against fraud.mp4 79.6 MB |
64-Chapter 10 Social network analysis concepts.mp4 46.4 MB |
65-Chapter 10 Score-based methods.mp4 32.2 MB |
66-Chapter 10 Neighborhood metrics.mp4 45.9 MB |
67-Chapter 10 Centrality metrics.mp4 61.3 MB |
68-Chapter 10 Collective inference algorithms.mp4 50.6 MB |
69-Chapter 10 Cluster-based methods.mp4 65.7 MB |
70-Part 4 Taming text with graphs.mp4 24.5 MB |
71-Chapter 11 Graph-based natural language processing.mp4 57.7 MB |
72-Chapter 11 A basic approach - Store and access sequence of words.mp4 53.5 MB |
73-Chapter 11 NLP and graphs.mp4 80.5 MB |
74-Chapter 11 NLP and graphs.mp4 70.0 MB |
75-Chapter 12 Knowledge graphs.mp4 60.1 MB |
76-Chapter 12 Knowledge graph building - Entities.mp4 94.1 MB |
77-Chapter 12 Knowledge graph building - Relationships.mp4 68.6 MB |
78-Chapter 12 Semantic networks.mp4 38.4 MB |
79-Chapter 12 Unsupervised keyword extraction.mp4 52.9 MB |
80-Chapter 12 Unsupervised keyword extraction.mp4 35.9 MB |
81-Chapter 12 Keyword co-occurrence graph.mp4 50.6 MB |
82-Appendix A. Machine learning algorithms taxonomy.mp4 65.2 MB |
83-Appendix C Graphs for processing patterns and workflows.mp4 43.8 MB |
84-Appendix C Graphs for defining complex processing workflows.mp4 50.4 MB |
85-Appendix D. Representing graphs.mp4 40.5 MB |
- Torrent indexed: 3 years
- Torrent updated: Saturday 21st of May 2022 04:30:56 PM
- Torrent hash: 0DE85E2EB7E10C2A64EB479F64F61EEE47B23B48
- Torrent size: 4.8 GB
- Torrent category: Tutorials

Community - Add torrent to search results - Stats - DMCA - Removal Request - TOR - Contact
Comments